Integrative Parameter-Free Clustering of Data with Mixed Type Attributes

نویسندگان

  • Christian Böhm
  • Sebastian Goebl
  • Annahita Oswald
  • Claudia Plant
  • Michael Plavinski
  • Bianca Wackersreuther
چکیده

Integrative mining of heterogeneous data is one of the major challenges for data mining in the next decade. We address the problem of integrative clustering of data with mixed type attributes. Most existing solutions suffer from one or both of the following drawbacks: Either they require input parameters which are difficult to estimate, or/and they do not adequately support mixed type attributes. Our technique INTEGRATE is a novel clustering approach that truly integrates the information provided by heterogeneous numerical and categorical attributes. Originating from information theory, the Minimum Description Length (MDL) principle allows a unified view on numerical and categorical information and thus naturally balances the influence of both sources of information in clustering. Moreover, supported by the MDL principle, parameter-free clustering can be performed which enhances the usability of INTEGRATE on real world data. Extensive experiments demonstrate the effectiveness of INTEGRATE in exploiting numerical and categorical information for clustering. As an efficient iterative algorithm INTEGRATE is scalable to large data sets.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Scalable algorithms for clustering large datasets with mixed type attributes

Clustering is a widely used technique in data mining applications for discovering patterns in underlying data. Most traditional clustering algorithms are limited to handling datasets that contain either numeric or categorical attributes. However, datasets with mixed types of attributes are common in real life data mining applications. In this article, we present two algorithms that extend the S...

متن کامل

A fuzzy c-means-type algorithm for clustering of data with mixed numeric and categorical attributes employing a probabilistic dissimilarity functional

Gath–Geva (GG) algorithm is one of the most popular methodologies for fuzzy c-means (FCM)-type clustering of data comprising numeric attributes; it is based on the assumption of data deriving from clusters of Gaussian form, a much more flexible construction compared to the spherical clusters assumption of the original FCM. In this paper, we introduce an extension of the GG algorithm to allow fo...

متن کامل

Incremental clustering of mixed data based on distance hierarchy

Clustering is an important function in data mining. Its typical application includes the analysis of consumer’s materials. Adaptive resonance theory network (ART) is very popular in the unsupervised neural network. Type I adaptive resonance theory network (ART1) deals with the binary numerical data, whereas type II adaptive resonance theory network (ART2) deals with the general numerical data. ...

متن کامل

An improved k-prototypes clustering algorithm for mixed numeric and categorical data

Data objects with mixed numeric and categorical attributes are commonly encountered in real world. The k-prototypes algorithm is one of the principal algorithms for clustering this type of data objects. In this paper, we propose an improved k-prototypes algorithm to cluster mixed data. In our method, we first introduce the concept of the distribution centroid for representing the prototype of c...

متن کامل

Retaining Customers Using Clustering and Association Rules in Insurance Industry: A Case Study

This study clusters customers and finds the characteristics of different groups in a life insurance company in order to find a way for prediction of customer behavior based on payment. The approach is to use clustering and association rules based on CRISP-DM methodology in data mining. The researcher could classify customers of each policy in three different clusters, using association rules. A...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010